Spasticity gene finding provides clues to causes of nerve cell degeneration

Stuart SchlossmanMS Genetic Research, MS Research Study and Reports, Multiple Sclerosis

January 9, 2012

The discovery of a gene that causes a form of hereditary spastic paraplegia (HSP) may provide scientists with an important insight into what causes axons, the stems of our nerve cells, to degenerate in conditions such as multiple sclerosis.
n the  today, an international team of scientists led by Dr Evan Reid at the University of Cambridge, and Dr Stephan Zuchner from the University of Miami, report that mutations in the gene known as ‘reticulon 2’ on chromosome 19 cause a form of HSP, a condition characterised by progressive  and  (spasticity) of the legs, caused by selective and specific degeneration of axons
The team identified three mutations in the reticulon 2 gene as causing a type of HSP – in one case, this mutation included an entire deletion of the gene. In addition, the researchers showed that reticulon 2 interacts with another gene, spastin.  in this latter gene cause the most common form of hereditary spastic paraplegia.
Reticulon 2 provides the genetic code for a reticulon protein that is a member of a family of proteins recently shown to play a key role in shaping the endoplasmic reticulum. The endoplasmic reticulum is a network of interconnected sheets and tubules that extends throughout the cytoplasm in nearly all cells. It has a number of functions, including protein synthesis, calcium signalling and regulation of other components of the cell. Recent data suggest that the sheets are involved in protein synthesis, whereas the tubules are specialised to carry out the other functions.
This new study provides the most direct evidence to date that defects in how the endoplasmic reticulum is shaped and formed could underlie axon degeneration. When axons degenerate, signals are unable to pass through the , leading to a breakdown of communication within the central nervous system. This is common in degenerative diseases of the nervous system, such as multiple sclerosis.
“Our work highlights important new disease mechanisms, which may provide a platform for us to study how axons are damaged in devastating illnesses such as HSP, and perhaps even in , which in some cases is very similar to HSP,” explains Dr Reid, a Wellcome Trust Senior Research Fellow in Clinical Science. “But we must not forget how this work may immediately directly benefit families affected by hereditary spastic paraplegia, for whom the discovery now opens up the possibility of genetic counselling and testing.”
Article source: Medical Press

..Comments for each blog posting are always appreciated. 

     Please use the link found below, to leave comments..
.. All comments are moderated to reduce SPAM and bad language
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 – Click to: REGISTER – For our MS weekly e-Newsletter

Providing You with ‘MS Views and News’, IS What We Do”   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Help us to educate $ DONATE NOW PLEASE $

“MS Views and News”  is a 501©(3) Not-For-Profit organization
 as recognized by the Internal Revenue Service

All contributions are tax deductible to the fullest extent allowed by law
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Disclaimer:  ‘MS Views and News’ (MSVN), does not endorse any products or services found on this blog. It is up to you to seek advice from your healthcare provider. The intent of this blog is to provide information on various medical conditions, medications, treatments, and procedures for your personal knowledge and to keep you informed of current health-related issues. It is not intended to be complete or exhaustive, nor is it a substitute for the advice of your physician. Should you or your family members have any specific medical problem, seek medical care promptly.

…………………………
Visit our MS Learning Channel on YouTube: http://www.youtube.com/msviewsandnews