Promising Multiple Sclerosis Treatment Targets Immune Cells to Increase Neuroprotection, Study Shows

Stuart SchlossmanMS Drug Therapies, Multiple Sclerosis, Oral MS Medications

ScienceDaily (Dec. 6, 2011) — Laquinimod is an orally available synthetic compound that has been successfully evaluated in phase II/III clinical studies for the treatment of relapsing-remitting multiple sclerosis (RRMS). The mechanism of action of laquinimod has not been fully elucidated, but a study published in the January 2012 issue of The American Journal of Pathology suggests that laquinimod triggers immune cells within the central nervous system to produce and release brain-derived neurotrophic factor (BDNF), contributing to the repair or survival of neurons and thus limiting brain damage.

“Our data are indicative of a direct and sustained effect of laquinimod on the up-regulation of bioactive BDNF in patients with RRMS. Additionally, we demonstrate that laquinimod targets monocytes and skews the phagocyte population towards a regulatory phenotype, which in turn mediates immune modulation in vivo,” explained Jan Thöne, MD, of the Department of Neurology at St. Josef-Hospital Bochum and Ruhr-University Bochum, Germany.
Neurotrophins, such as BDNF, are essential for the development and maintenance of neurons and axons in the central nervous system. Although BDNF is mainly produced by neurons, several types of immune cells also secrete BDNF, suggesting a role in neuroprotection.
To elucidate the mechanism of action of laquinimod, and to explore its potential neuroprotective capacity, the researchers evaluated levels of BDNF in the serum of RRMS patients treated with laquinimod in phase II clinical trials. A significant and robust BDNF increase occurred in 76% of the laquinimod-treated patients, with up to an 11-fold increase in BDNF serum levels observed in individual patients. BDNF elevation in individual patients was independent of relapse rate, and there was no correlation between BDNF levels and age, gender, or baseline disability. Yet, the source of serum BDNF subsequent to treatment remained questionable.
Experiments with animal models corroborated the findings in human patients. Experimental autoimmune encephalomyelitis (EAE; a model of MS) was induced in mice with a conditional BDNF deficiency in immune cells (LLF mice) and in wild-type (WT) control mice. Treatment with laquinimod resulted in a significant reduction in EAE incidence and disease severity in the WT mice. The effect of laquinimod was significantly reduced in the LLF-mice.
Further studies showed that WT mice treated with a suboptimal dose of laquinimod demonstrated a significant reduction in the inflammatory area and level of demyelination. These mice also displayed a reduction of macrophage infiltration and a significant preservation of axonal densities in comparison with laquinimod-treated LLF mice and controls. The data suggest a BDNF-dependent mechanism of action for laquinimod in autoimmune demyelination.

..

===========================================================
 – Click to: REGISTER – For our MS weekly e-Newsletter

Providing You with ‘MS Views and News’, IS What We Do” 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Help us to educate $ DONATE NOW PLEASE $

“MS Views and News”  is a 501©(3) Not-For-Profit organization
 as recognized by the Internal Revenue Service

All contributions are tax deductible to the fullest extent allowed by law
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Disclaimer:  ‘MS Views and News’ (MSVN), does not endorse any products or services found on this blog. It is up to you to seek advice from your healthcare provider. The intent of this blog is to provide information on various medical conditions, medications, treatments, and procedures for your personal knowledge and to keep you informed of current health-related issues. It is not intended to be complete or exhaustive, nor is it a substitute for the advice of your physician. Should you or your family members have any specific medical problem, seek medical care promptly.

…………………………

Visit our MS Learning Channel on YouTube: http://www.youtube.com/msviewsandnews