One of the newly identified compounds, a Parkinson’s disease drug called benztropine, was highly effective in treating a standard model of MS in mice, both alone and in combination with existing MS therapies.
“We’re excited about these results, and are now considering how to design an initial clinical trial,” said Luke L. Lairson, an assistant professor of Chemistry at TSRI and senior author of the study, which is reported online in Nature on October 9, 2013.
Lairson cautioned that benztropine is a drug with dose-related adverse side effects, and has yet to be proven effective at a safe dose in human MS patients. “People shouldn’t start using it off-label for MS,” he said.
A New Approach
An autoimmune disease of the brain and spinal cord, MS currently affects more than half a million people in North America and Europe, and more than two million worldwide. Its precise triggers are unknown, but certain infections and a lack of vitamin D are thought to be risk factors. The disease is much more common among those of Northern European heritage, and occurs about twice as often in women as in men.
In MS, immune cells known as T cells infiltrate the upper spinal cord and brain, causing inflammation and ultimately the loss of an insulating coating called myelin on some nerve fibers. As nerve fibers lose this myelin coating, they lose their ability to transmit signals efficiently, and in time may begin to degenerate. The resulting symptoms, which commonly occur in a stop-start, “relapsing-remitting” pattern, may include limb weakness, numbness and tingling, fatigue, vision problems, slurred speech, memory difficulties and depression, among other problems.
Current therapies, such as interferon beta, aim to suppress the immune attack that de-myelinates nerve fibers. But they are only partially effective and are apt to have significant adverse side effects.