(Medical Xpress)—Like conducting an errant orchestra to play together, researchers are guiding processes that go awry in multiple sclerosis to repair themselves.
The conductor walks to the stand and takes his place in front of the orchestra. He raises his baton and, with a dramatic flourish, one hundred individuals come to life. From nowhere, the stillness becomes a beautiful harmony as each member takes their part in a complex symphony.
Consider the workings and structure of the human brain – our most complicated organ – in terms of this orchestra. When it works, it is capable of something more remarkable than the greatest musical compositions in human history, but when it is affected by a condition such as multiple sclerosis (MS), “the brain’s tightly orchestrated biological functions become discordant – the conductor begins to fail at their job and several instruments go out of tune,” said Professor Robin Franklin, Head of Translational Science at the Wellcome Trust-Medical Research Council (MRC) Cambridge Stem Cell Institute and Director of the MS Society Cambridge Centre for Myelin Repair.
His research team and those led by other Stem Cell Institute researchers Drs Thóra Káradóttir, Mark Kotter and Stefano Pluchino are each looking at a different aspect of this errant orchestra. They hope that their collective knowledge will one day help ‘re-tune’ the brains of MS patients to self-repair.
In its simplest terms, MS is a disease in which the immune system turns on itself, destroying the oligodendrocytes that make a protective sheath called myelin, which encases nerve fibres. This halts the transmission of neural messages, and eventually leads to nerve fibre damage, resulting in a progressive loss of movement, speech and vision for the 100,000 people in the UK who have MS.
However, the complexities of treating the disease go beyond simply stopping the destruction of myelin, said Franklin: “The myelin damage causes a build-up of debris, which needs removing, and the environment surrounding the cells needs to be conducive to regenerating the sheath. When we think about repairing the damage, we need to be considering several different biological phenomena at the same time.”
~~~~~~~~~~~~~~~~~~~~
.
.
Visit our MS Learning Channel on YouTube: http://www.youtube.com/msviewsandnews