Experimental cancer drug shows therapeutic promise in mouse models of multiple sclerosis

Stuart SchlossmanMS Research Study and Reports

Information provided to us by Holly S in Florida

Date:         September 30, 2015

Source:      NYU Langone Medical Center

Summary:  An experimental drug originally identified in a National Cancer Institute library of chemical compounds as a potential therapy for brain and basal cell cancers improves the symptoms of mice with a form of the debilitating neurological disorder multiple sclerosis (MS), according to new research.
An experimental drug originally identified in a National Cancer Institute library of chemical compounds as a potential therapy for brain and basal cell cancers improves the symptoms of mice with a form of the debilitating neurological disorder multiple sclerosis (MS), according to new research from NYU Langone Medical Center.

The experimental drug employed by the NYU Langone team of neuroscientists is called GANT61. It blocks the action of a key protein, Gli1, which is involved in so-called sonic hedgehog signaling, a biological pathway closely tied to neural stem cell development and the growth of some cancers, and whose signaling is raised in tissue samples taken from brain lesions in patients with MS.

A report describing the findings is being published in the journal Nature online Sept. 30.
In the study, mice with chemically damaged brain myelin were given daily doses of GANT61 for one month. Results showed that mice that received the drug had 50 percent more myelin at the end of treatment than did untreated mice. Myelin is the nerve-protecting sheath whose degradation is a principal cause of MS.

Moreover, the researchers say, they found that the GANT61-treated mice had an eightfold increase in the number of neural stem cells that migrated to myelin-damaged areas of the brain and eventually developed into myelin-producing oligodendrocytes. Untreated mice did not show this increase.

Clinically, the researchers report, drug-treated mice were able to recover from an initial bout of MS-like paralysis and leg weakness. Untreated mice, however, endured repeated bouts of leg and bladder weakness, symptoms similar to those experienced by people with the disorder.

According to senior study investigator James Salzer, MD, PhD, the experiments, which took six years to complete, are believed to be the first to demonstrate that neural stem cells, and not just early forms of oligodendrocytic cells, can be modified and recruited into myelin repair. Current treatments that target the immune system mostly slow the disease, which primarily targets myelin in the brain and spinal cord, but clinical experts have not yet been able to repair scarred and degraded myelin.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MS Views and News helps to provide information for all affected by MS
Keep up to date with the news and information we provide 
by signing up by clicking here
.===================================
Visit our MS Learning Channel on YouTube: http://www.youtube.com/msviewsandnews