Blocking hyaluronidase activity can help repair brain damage associated with MS

Stuart SchlossmanMS Research Study and Reports

Researchers at Oregon Health & Science University have discovered that blocking a certain enzyme in the brain can help repair the brain damage associated with multiple sclerosis and a range of other neurological disorders.

The discovery could have major implications for multiple sclerosis, complications from premature birth and other disorders and diseases caused by demyelination – a process where the insulation-like sheath surrounding nerve cells in the brain becomes damaged or destroyed. Demyelination disrupts the ability of nerve cells to communicate with each other, and produces a range of motor, sensory and cognitive problems in MS and other disorders.

The study was published this week in the online edition of the Annals of Neurology. The study was conducted by a team of researchers led by Larry Sherman, Ph.D., who is a professor of cell and development biology at OHSU and a senior scientist in the Division of Neuroscience at the Oregon National Primate Research Center.

“What this means is that we have identified a whole new target for drugs that might promote repair of the damaged brain in any disorder in which demyelination occurs,” Sherman said. “Any kind of therapy that can promote remyelination could be an absolute life-changer for the millions of people suffering from MS and other related disorders.”

Sherman’s lab has been studying MS and other conditions where myelin is damaged for more than 14 years. In 2005, he and his research team discovered that a sugar molecule, called hyaluronic acid, accumulates in areas of damage in the brains of humans and animals with demyelinating brain and spinal cord lesions. Their findings at the time, published in Nature Medicine, suggested that hyaluronic acid itself prevented remyelination by preventing cells that form myelin from differentiating in areas of braindamage.

The new study shows that the hyaluronic acid itself does not prevent the differentiation of myelin-forming cells. Rather, breakdown products generated by a specific enzyme that chews up hyaluronic acid – called a hyaluronidase – contribute to the remyelination failure.

If you would like, you can comment to our blog posts
 LIKE this Blog by clicking the LIKE button – top left
 REMAIN up to date with MS News and Education
Visit: www.msviewsandnews.org  to register
.
Visit our MS Learning Channel on YouTube: http://www.youtube.com/msviewsandnews